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Abstract
This article focuses on the study of KCD indices for generalized transformation graphs Gyz and their complements. In

this study, the expressions for KCD indices of Gyz and Gyz are obtained. Further the results are verified by an algorithmic
approach.
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1. Introduction

The graph G considered in this article is simple, connected and finite of order n and size m. The
vertex degree degG(v) is the sum of all the edges incident to the vertex v ∈ V(G). The complement graph
G with v ∈ V(G) is a graph having two vertices as adjacent if they are non-adjacent in G. The notations
and terminologies which are not defined are cited from [5].

A numerical quantity computed for a graph which is obtained from the molecular graph is called as
topological index. Topological indices are used to analyse mathematical values. Extensive research work
on topological index with respect to vertex degree has been documented in [2]. H. Wiener introduced
the topological index with respect to distance in 1947 [12]. Randić proposed the first vertex degree based
topological index in 1975 known as connectivity index or Randic index [10]. Zagreb indices were defined
in 1972 [3], where the first Zagreb index is

M1(G) =
∑

e=uv∈E(G)

(
degG (u) + degG (v)

)
.

Voluminious research work has been published on various topological indices by several mathematicians
[4, 6, 7, 11].

One of the fascinating branch in graph theory is graph tranformation which has received the most
attention in the research field. The technique of obtaining a new graph from the given graph by making
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a few changes in the given graph is termed as graph tranformation. In particular, this technique uses
the incidency or non-incidency relationship between vertices and edges along with the adjacency or non-
adjacency relationship between two vertices, two edges, two cutvertices and so on is known as graph
tranformation.

Algorithms are the instructions for solving a problem or completing a task. An algorithmic approach
will make the computation process more efficient and easier with accuracy. Developing an algorithm
enables computation process in logical manner. Hence in this article effort has been made to design an
algorithm to compute KCD indices for Gyz and Gyz.

2. Preliminaries

Generalized Transformation Graph Gyz [13, 1] is a graph having a vertex set V(G)∪ E(G) and η, ζ ∈
V(Gyz), where y and z are variables take the values + or -. The vertices η and ζ are adjacent in Gyz if and
only if (a) and (b) holds:
(a) For η, ζ ∈ V(G) and if η and ζ are adjacent in G then y = + otherwise y = −. Here y = + and y = −
represent the adjacency relationhip.
(b) For η ∈ V(G) and ζ ∈ E(G) and if η and ζ are incident in G, then z = + otherwise z = −. Here z = +
an z = − represent the incidency relationship.

There are four graphical transformations of a graph, such as G++, G+−, G−+ and G−−.
Let Gyz is the complement of transformation graph Gyz.

Recently a set of vertex-edge degree based topological indices are presented in [8] and termed as KCD
(Karnatak College Dharwad) indices.

The first and second KCD indices are

KCD1(G) =
∑

e=uv∈E(G)

(
(degG (u) + degG (v)) + degG(e)

)
(2.1)

KCD2(G) =
∑

e=uv∈E(G)

(
(degG (u) + degG (v))degG(e)

)
, (2.2)

where degG(u) and degG(v) represent the vertex degree and degG(e) = degG(u)+degG(v)−2 represents
the edge degree.

Below mentioned propositions are of immediate use in proof of the results.
Proposition 2.1. [9] For G with u ∈ V(G), e ∈ E(G)
(a) degG++(u)= 2degG(u) and degG++(e)=2.
(b) degG+−(u)=m and degG+−(e)=n− 2.
(c) degG−+(u)=n− 1 and degG−+(u)=2.
(d) degG−−(u) =n+m− 1 − 2degG(u) and degG−−(e)=n− 2.
Proposition 2.2. [9] For G with u ∈ V(G), e ∈ E(G)
(a) E(G++) is divided into sets E1 and E2, E1={uv|uv ∈ E(G)} and E2={ue| u is incident to e in G}, where
|E1| = m and |E2| = 2m.
(b) E(G+−) is divided into sets E1 and E2, E1={uv|uv ∈ E(G)} and E2={ue| u is not incident to e in G},
where |E1| = m and |E2| = m(n− 2).
(c) E(G−+) is divided into sets E1 and E2, E1 = {uv|uv /∈ E(G)} and E2={ue| u is incident to e in G}, where
|E1|=

(
n
2

)
-m and |E2| = 2m.

(d) E(G−−) is divided into sets E1 and E2, E1={uv|uv /∈ E(G)} and E2={ue| u is not incident to e in G},
where |E1|=

(
n
2

)
-m and |E2| = m(n− 2).

Proposition 2.3. [9] For G with u ∈ V(G), e ∈ E(G)
(a) degG++(u)= n+m− 1 − 2degG(u) and degG++(e)=n+m− 3.
(b) degG+−(u)=n− 1 and degG+−(e)=m+ 1.
(c) degG−+(u)=m and degG−+(e)=n+m− 3.
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(d) degG−−(u) =2degG(u) and degG−−(e)=m+ 1.
Proposition 2.4. [9] For G with u ∈ V(G), e ∈ E(G)
(a) E(G++) is divided into sets E1, E2 and E3, E1={uv|uv /∈ E(G)}, E2={ue| u is not incident to e in G} and
E3= {ef|e, f ∈ E(G)}, where |E1|=

(
n
2

)
-m, |E2| = m(n− 2) and E3=

(
m
2

)
.

(b) E(G+−) is divided into sets E1, E2 and E3, E1={uv|uv /∈ E(G)}, E2={ue| u is incident to e in G} and
E3= {ef|e, f ∈ E(G)}, where |E1|=

(
n
2

)
-m, |E2| = 2m and E3=

(
m
2

)
.

(c) E(G−+) is divided into sets E1, E2 and E3, E1={uv|uv ∈ E(G)}, E2={ue| u is not incident to e in G} and
E3= {ef|e, f ∈ E(G)}, where |E1| = m, |E2| = 2m(n− 2) and E3=

(
m
2

)
.

(d) E(G−−) is divided into sets E1, E2 and E3, E1={uv|uv ∈ E(G)}, E2={ue| u is incident to e in G} and
E3= {ef|e, f ∈ E(G)}, where |E1| = m, |E2| = 2m and E3=

(
m
2

)
.

In this paper the results on generalized transformation graphs and their complements for first and
second KCD indices are obtained. An algorithm is proposed to verify the results.

3. Results

3.1. First and second KCD indices of Gyz

Theorem 3.1.1 For any graph G,

KCD1(G
++) = 4M1(G) − 2m+

∑
ue∈E2

2
(

2degG(u) + 1
)

.

Proof. From Equation (2.1), we get

KCD1(G
++) =

∑
uv∈E(G++)

(
2degG++(u) + 2degG++(v) − 2

)

=
∑

uv∈E1

(
2degG++(u) + 2degG++(v) − 2

)
+

∑
ue∈E2

(
2degG++(u) + 2degG++(e) − 2

)

=
∑

uv∈E(G)

(
2(2degG(u)) + 2(2degG(v)) − 2

)

+
∑

ue∈E2

(
2(2degG(u)) + 4 − 2

)
using Propoition 2.1(a)

=
∑

uv∈E(G)

2
(

2degG(u) + 2degG(v) − 1
)
+

∑
ue∈E2

2
(

2degG(u) + 1
)

= 4M1(G) − 2m+
∑

ue∈E2

2
(

2degG(u) + 1
)

. using Propoition 2.2(a)

Theorem 3.1.2 For any graph G,

KCD2(G
++) =

∑
uv∈E(G)

4
(
degG(u) + degG(v)

)(
degG(u) + degG(v) − 1

)

+
∑

ue∈E2

4degG(u)

(
degG(u) + 1

)
.

Proof. Proof follows from Equation (2.2) and Propositions 2.1 (a).
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Theorem 3.1.3 For any graph G,

KCD1(G
+−) = 2m

(
n2 +nm− 5n+ 5

)
.

Proof. From Equation (2.1), we get

KCD1(G
+−) =

∑
uv∈E(G+−)

(
2degG+−(u) + 2degG+−(v) − 2

)

=
∑

uv∈E1

(
2degG+−(u) + 2degG+−(v) − 2

)
+

∑
ue∈E2

(
2degG+−(u) + 2degG+−(e) − 2

)

=
∑

uv∈E(G)

(
4m− 2

)
+

∑
ue∈E2

(
2m+ 2n− 6

)
using Propoition 2.1(b)

= 2m
(
n2 +nm− 5n+ 5

)
. using Propoition 2.2(b)

Theorem 3.1.4 For any graph G,

KCD2(G
+−) = 4m(m− 1) +m(n− 2)(m2 +n2 − 2nm− 6n− 6m− 8).

Proof. Proof follows from Equation (2.2) and Propositions 2.1(b) and 2.2(b).

Theorem 3.1.5 For any graph G,

KCD1(G
−+) = (2n− 3)(n2 −n− 2m) + 4nm.

Proof. From Equation (2.1), we get

KCD1(G
−+) =

∑
uv∈E(G+−)

(
2degG−+(u) + 2degG−+(v) − 2

)

=
∑

uv∈E1

(
2degG−+(u) + 2degG−+(v) − 2

)
+

∑
ue∈E2

(
2degG−+(u) + 2degG−+(e) − 2

)
=

∑
uv/∈E(G)

(4n− 6) +
∑

ue∈E2

2n using Propoition 2.1(c)

= (2n− 3)(n2 −n− 2m) + 4nm. using Propoition 2.2(c)

Theorem 3.1.6 For any graph G,

KCD2(G
−+) = 2

(
(n2 − 3n+ 2)(n2 −n− 2m) +m(n2 − 1)

)
.

Proof. Proof follows from Equation (2.2) and Propositions 2.1(c) and 2.2(c).

Theorem 3.1.7 For any graph G,

KCD1(G
−−) = =

∑
uv/∈E(G)

2
(

2n+ 2m− 3 − 2degG(u) − 2degG(v)

)

+
∑

ue∈E2

2
(

2n+m− 4 − 2degG(u)

)
.
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Proof. From Equation (2.1), we get

KCD1(G
−−) =

∑
uv∈E(G−−)

(
2degG−−(u) + 2degG−−(v) − 2

)

=
∑

uv∈E1

(
2degG−−(u) + 2degG−−(v) − 2

)
+

∑
ue∈E2

(
2degG−−(u) + 2degG−−(e) − 2

)

=
∑

uv/∈E(G)

2
(

2n+ 2m− 3 − 2degG(u) − 2degG(v)

)

+
∑

ue∈E2

2
(

2n+m− 4 − 2degG(u)

)
. using Propoition 2.1(d)

Theorem 3.1.8 For any graph G,

KCD2(G
−−) =

∑
uv∈E1

(
2n+ 2m− 2 − 2degG(u) − 2degG(v)

)(
2n+ 2m− 4 − 2degG(u) − 2degG(v)

)

+
∑

ue∈E2

(
2n+m− 3 − 2degG(u)

)(
2n+m− 5 − 2degG(u)

)
.

Proof. Proof follows from Equation (2.2) and Propositions 2.1(d).

3.2. First and second KCD indices of Gxy

Theorem 3.2.1 For any graph G,

KCD1(G++) =
∑

uv∈E(G)

(
4n+ 4m− 6 − 4degG(u) − 4degG(v)

)

+
∑

ue∈E2

(
4n+ 4m− 10 − 4degG(u)

)
+m(m− 1)(2n+ 2m− 7).

Proof. From Equation (2.1), we get

KCD1(G++) =
∑

uv∈E(G++)

(2degG++(u) + 2degG++(v) − 2)

=
∑

uv∈E1

(2degG++(u) + 2degG++(v) − 2) +
∑

ue∈E2

(2degG++(u) + 2degG++(e) − 2)

+
∑

ef∈E3

(2degG++(e) + 2degG++(f) − 2)

=
∑

uv∈E(G)

(2(n+m− 1 − 2degG(u)) + 2(n+m− 1 − 2degG(v)) − 2)

+
∑

ue∈E2

(2(n+m− 1 − 2degG(u)) + 2(n+m− 3) − 2)

+
∑

ef∈E3

(2(n+m− 3) + 2(n+m− 3) − 2) using Propoition 2.3(a)
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=
∑

uv∈E(G)

(4n+ 4m− 6 − 4degG(u) − 4degG(v))

+
∑

ue∈E2

(4n+ 4m− 5 − 4degG(u))

+
∑

ef∈E3

(4n+ 4m− 14)

=
∑

uv∈E(G)

(4n+ 4m− 6 − 4degG(u) − 4degG(v))

+
∑

ue∈E2

(4n+ 4m− 5 − 4degG(u))

+
m(m− 1)

2
(4n+ 4m− 14) using Propoition 2.4(a)

=
∑

uv∈E(G)

(4n+ 4m− 6 − 4degG(u) − 4degG(v))

+
∑

ue∈E2

(4n+ 4m− 10 − 4degG(u))

+m(m− 1)(2n+ 2m− 7).

Theorem 3.2.2 For any graph G,

KCD2(G++) =
∑

uv∈E1

4
(
n+m− 1 − degG(u) − degG(v)

)(
n+m− 2 − degG(u) − degG(v)

)

+
∑

ue∈E2

4
(
n+m− 2 − degG(u)

)(
n+m− 3 − degG(u)

)
+2m(m− 1)(n2 +m2 + 2nm− 7n− 7m+ 12).

Proof. Proof follows from Equation (2.2) and Propositions 2.3(a) and 2.4(a).

Theorem 3.2.3 For any graph G,

KCD1(G+−) = (n2 −n− 2m)(2n− 3) +m

(
4(n+m− 1) + (m− 1)(2m+ 1)

)
.

Proof. From Equation (2.1), we get

KCD1(G+−) =
∑

uv∈E(G+−)

(
2degG+−(u) + 2degG+−(v) − 2

)

=
∑

uv∈E1

(
2degG+−(u) + 2degG+−(v) − 2

)
+

∑
ue∈E2

(
2degG+−(u) + 2degG+−(e) − 2

)

+
∑

ef∈E3

(
2degG+−(e) + 2degG+−(f) − 2

)
=

∑
uv∈E(G)

(4n− 6) +
∑

ue∈E2

(2n+ 2m− 2) +
∑

ef∈E3

(4m+ 2) using Propoition 2.3(b)

= (n2 −n− 2m)(2n− 3) +m(4(n+m− 1) + (m− 1)(2m+ 1)). using Propoition 2.4(b)
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Theorem 3.2.4 For any graph G,

KCD2(G+−) = 2
(
n2 − 3n+ 2

)(
n2 −n− 2m

)
+ 2m

(
(n+m)(n+m− 2) +m(m2 − 1)

)
.

Proof. Proof follows from Equation (2.2) and Propositions 2.3(b) and 2.4(b).

Theorem 3.2.5 For any graph G,

KCD1(G−+) = 2m(2m− 1) +m(2(n− 2)(2m+n− 4) + (m− 1)(2n+ 2m− 7)).

Proof. From Equation (2.1), we get

KCD1(G−+) =
∑

uv∈E(G−+)

(
2degG−+(u) + 2degG−+(v) − 2

)

=
∑

uv∈E1

(
2degG−+(u) + 2degG−+(v) − 2

)
+

∑
ue∈E2

(
2degG−+(u) + 2degG−+(e) − 2

)

+
∑

ef∈E3

(
2degG−+(e) + 2degG−+(f) − 2

)
=

∑
uv∈E(G)

(4m− 2) +
∑

ue∈E2

(4m+ 2n− 8)

+
∑

ef∈E3

(4n+ 4m− 14) using Propoition 2.3(c)

= 2m
(

2m− 1
)
+m

(
2(n− 2)(2m+n− 4)

+(m− 1)(2n+ 2m− 7)
)

. using Propoition 2.4(c)

Theorem 3.2.6 For any graph G,

KCD2(G−+) = 2m(m− 1)
(

2m+ (n+m− 3)(n+m− 4)
)
+m

(
m− 2

)(
2m+n− 3

)(
2m+n− 5

)
.

Proof. Proof follows from Equation (2.2) and Propositions 2.3(c) and 2.4(c).

Theorem 3.2.7 For any graph G,

KCD1(G−−) =
∑

uv∈E(G)

2
(

2degG(u) + 2degG(v) − 1
)
+

∑
ue∈E2

2
(

2degG(u) +m

)
+m

(
m2 −m− 1

)
.
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Proof. From Equation (2.1) and Propositions 2.3 and 2.4, we get

KCD1(G−−) =
∑

uv∈E(G−−)

(
2degG−−(u) + 2degG−+(v) − 2

)

=
∑

uv∈E1

(
2degG−−(u) + 2degG−−(v) − 2

)
+

∑
ue∈E2

(
2degG−−(u) + 2degG−−(e) − 2

)

+
∑

ef∈E3

(
2degG−−(e) + 2degG−−(f) − 2

)

=
∑

uv∈E(G)

(
4degG(u) + 4degG(v) − 2

)
+

∑
ue∈E2

(
4degG(u) + 2(m+ 1) − 2

)

+
∑

ef∈E3

(
4m+ 2

)
using Propoition 2.3(d)

=
∑

uv∈E(G)

2
(

2degG(u) + 2degG(v) − 1
)

+
∑

ue∈E2

2
(

2degG(u) +m

)
+m

(
m2 −m− 1

)
. using Propoition 2.4(d)

Theorem 3.2.8 For any graph G,

KCD2(G−−) =
∑

uv∈E(G)

4
(
degG(u) + degG(v)

)(
degG(u) + degG(v) − 1

)

+
∑

ue∈E2

(
(2degG(u) +m)2 − 1

)
+ 2m2

(
m2 − 1

)
.

Proof. Proof follows from Equation (2.2) and Propositions 2.3(d) and 2.4(d).

4. Algorithm to compute KCD indices

In this section, an algorithm is designed to make the computation of KCD indices convenient and ease
for any kind of connected graph.
Step 1: START
Step 2: [Reading values]

Read n, graph-type.
Step 4: [Checking wheather graph-type is directed or undirected]

if(graph-type is undirected)
begin
maxedges← n ∗ (n− 1)/2
end

else
begin
maxedges← n ∗ (n− 1)
end

Step 3: [Creating an adjacency matrix]
for i to maxedges

begin
Read ori, dest
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if ((ori == 0) and (dest == 0))
break

if (ori > n or dest > n or ori ⩽ 0 or dest ⩽ 0)
begin

Display ”Invalid edge”
end
else
begin

adj[ori][dest]← 1
end
if(graph-type==undirected)

begin
adj[dest][ori]← 1
end

end
Step 5: [Computing the degree of every vertex]

for i = 1 to n

begin
deg[i]← 0
for j to n

begin
deg[i]← deg[i]+a[i][j]

end
Display deg[i]

end
Step 6: [Computing first and second KCD indices]

for i = 1 to n

begin
for j = 1 to n

if (a[i][j]) == 1 and i < j)
begin
KCD1← KCD1 + 2 ∗ deg[i] + 2 ∗ deg[j] − 2
KCD2← KCD2 + (deg[i] + deg[j]) ∗ (deg[i] + deg[j] − 2)
end
end
end

Step 7: [Displaying the result]
Display KCD1, KCD2

Step 8: STOP.
This algorithm reads input as adjacent edges and graph type. It checks whether the graph type is

directed or undirected and accordingly creates adjacency matrix adj[i][j]. Further it computes the degree
of each vertex and correspondingly computes KCD1 and KCD2 for adjacent vertices.

As adjacency matrix adj[i][j] is stored using 2-dimensional array, the outer loop and inner loop exe-
cutes based on the array size n. The execution time required to complete both loops is n ∗n times. Thus
time complexity of this algorithm is O(n2).
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